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Abstract 12 

Purpose of review: Some aerosols absorb solar radiation, altering cloud properties, atmospheric 13 

stability and circulation dynamics, and the water cycle. Here we review recent progress towards 14 

global and regional constraints on aerosol absorption from observations and modelling, considering 15 

physical properties and combined approaches crucial for understanding the total (natural and 16 

anthropogenic) influences of aerosols on the climate. 17 

Recent findings: We emphasize developments in black carbon absorption alteration due to coating 18 

and ageing, brown carbon characterization, dust composition, absorbing aerosol above cloud, 19 
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source modelling and size distributions, and validation of high-resolution modelling against a range 20 

of observations. 21 

Summary: Both observations and modelling of total aerosol absorption, absorbing aerosol optical 22 

depths and single scattering albedo, as well as the vertical distribution of atmospheric absorption, 23 

still suffer from uncertainties and unknowns significant for climate applications. We offer a roadmap 24 

of developments needed to bring the field substantially forward.  25 

 26 
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Introduction 29 

Improving constraints on aerosol absorption of light is a key challenge for current atmospheric 30 

research. Although it has long been known that some aerosol species perturb the energy balance of 31 

the atmospheric column through shortwave absorption, affecting radiative forcing, cloud formation, 32 

precipitation and more, the magnitude of these effects has proven difficult to pin down. A 2009 33 

review paper [1] concluded that although progress was rapid, “there is need for much additional 34 

work in characterizing aerosol light absorption in the atmosphere and its effects on radiative forcing 35 

and visibility.” Despite a subsequent decade of active research and considerable progress, this 36 

statement is still generally true. However, recent developments and suggestions for future 37 

observations show great promise, indicating that better constraints on aerosol absorption may be 38 

possible in the near future. 39 

Aerosols affect the climate system by intercepting incoming shortwave radiation. Although all 40 

aerosols act as scatterers of radiation, reducing surface irradiance, some species also absorb, 41 

effectively adding a positive energy term to the atmospheric radiative balance. The main absorbing 42 
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aerosol species are black carbon (BC) [2], mineral dust [3,4], and the absorbing component of 43 

organic aerosols [5,6], recently termed brown carbon (BrC). Conceptually, the net shortwave aerosol 44 

absorption, usually quantified through the absorbing aerosol optical depth (AAOD), can therefore be 45 

thought of as the sum of the contributions of these three separate species, integrated over the 46 

atmospheric column. Observationally, however, such clear distinction into separate aerosol 47 

categories is usually not possible, because of mixing of aerosol species. This makes validation of 48 

model predictions challenging.  49 

Further, the aerosol types - however they are defined - differ significantly in emission volumes, 50 

locations, and seasonality, in their transport and residence times in the atmosphere, and in the 51 

spectral dependence of their absorptive (and other optical) properties. Aerosol loading varies 52 

significantly with geographical location and season, and depends upon annually varying conditions 53 

such as meteorology, soil moisture, and the intensity of fire seasons. Aerosol absorption is currently 54 

retrieved via remote sensing (e.g., satellites and ground-based sunphotometers) or measured via in-55 

situ instruments at long-term surface stations and during aircraft field campaigns. Although a wealth 56 

of observational data exists, these data are still far from sufficient to provide global and annual 57 

coverage of such diverse and rapidly varying quantities. Present efforts therefore focus on 58 

combining model calculations with observations through gap filling, assimilation techniques and 59 

reanalysis.  60 

In the present review, we define “constraint” as reasonable agreement between observations and 61 

theoretical or model-based estimates, combined with a quantification of the agreement and some 62 

understanding of why the two agree. We think that a reasonable agreement is achieved if global 63 

anthropogenic aerosol forcing due to aerosol radiation interactions from absorbing components 64 

could be estimated within 0.1 W m-2. To break the problem down, we first cover recent advances in 65 

modelling and observational constraints on the physical properties of individual aerosol species. 66 

Topics of particular interest are absorption changes from ageing (coating and fractal collapse) of 67 



Under revision for Current Climate Change Reports V3.5 13.02.2018 

4 
 

black carbon (BC), and improved understanding of BC particle morphology and mixing state. For 68 

brown carbon, the main challenges are the spectral absorption dependence and ageing properties, 69 

as well as a clear distinction from BC and dust. For mineral dust, important issues are the 70 

uncertainties associated with composition, size, and source distribution (and changes in these 71 

properties during transport), as well as modelled source terms. Next, we cover advances in 72 

observations via remote sensing and in-situ measurements, and recent reanalysis results. We also 73 

discuss a range of outstanding issues and how they currently preclude sufficient constraints on 74 

aerosol absorption to guide global or regional climate models for climate forcing applications. A 75 

roadmap towards improved constraints on aerosol absorption, as defined above, is given in Table 1. 76 

The recommendations we set out are drawn from the discussions of recent literature in the coming 77 

sections, and from discussions at topical workshops such as the annual AeroCom/AeroSAT meeting. 78 

A summary of the major topics in recent literature, including some key publications, is also provided 79 

in Supplementary Table 1.  80 

As the present format is not suited to review the underlying theory or core experimental and 81 

numerical techniques, we refer the reader to the reviews and summaries of Moosmüller et al. [1], 82 

Bergstrom et al. [7], Petzold et al. [8], Lack et al. [9] and Stier et al. [10].  83 

Motivation 84 

The present lack of good constraints on aerosol absorption can significantly affect estimates of 85 

aerosol climate impact. As an example, we consider the recent Phase 2 of the AeroCom multi-model 86 

initiative. There, modellers simulated aerosol loading and radiative impacts for the same 87 

meteorological year (2006) using identical emissions (year 2000, [11]). They reported a multi-model 88 

annual mean total AAOD at 550nm of 0.0042 ± 0.0019 (one std.dev.), with a min-max range of 89 

[0.0021, 0.0076] (See Myhre et al. [12]). Anthropogenic AAOD at 550nm was reported as 0.0015 ± 90 

0.0007, with a global relative standard deviation of ~50%. (See further discussion of AeroCom Phase 91 

2 below, and Figure 2.)  92 
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To test the implications of this uncertainty for climate simulations, we modified the optical 93 

properties of BC in a recent climate model (CESM 1.2 using CAM5 [13] with year 2000 conditions and 94 

fixed sea-surface temperatures), by a quantity sufficient to increase the total annual mean AAOD by 95 

approximately one AeroCom Phase II standard deviation (AeroCom multi-model historical AAOD: 96 

0.0015±0.0015; our baseline was 0.0030, perturbed to 0.0043). By comparing the simulated 97 

perturbed setup to one using the default CAM5 optical parameters for years 3-30, we find an 98 

instantaneous, top-of-atmosphere effective radiative forcing of up to 3 Wm-2 over BC emission 99 

hotspots (global mean: 0.2 Wm-2, which is comparable to the historical aerosol RF of the direct effect 100 

in AeroCom Phase II: -0.27±0.15 Wm-2). Calculation of effective radiative forcing (ERF) followed 101 

Forster et al. [14]. Even with fixed sea-surface temperatures, this forcing induces land surface 102 

temperature changes of up to +0.5 K over midlatitude regions, and up to +1 K over high albedo 103 

surfaces such as Greenland - far from emission regions. Notable changes are also simulated for 104 

precipitation and cloud fractions, as parts of the response to the forcing. Although this setup is 105 

idealized, and results would differ if mineral dust or brown carbon was perturbed instead of BC, it 106 

indicates the magnitude of inter-model differences possible within the present spread of predicted 107 

AAOD. Recently, it has also been shown that BC, as a significant contributor to atmospheric 108 

absorption, is likely a main driver of inter-model differences in precipitation predictions ([15-17]). In 109 

our simplified simulation mentioned above, atmospheric column energy absorption also changed by 110 

up to 5 Wm-2 in regions with high BC emissions, likely affecting atmospheric stability and 111 

precipitation rates. Clearly, better constraints on AAOD would aid the development of coupled 112 

climate models.  113 

Another notable example of the importance and understanding of aerosol absorption is the use of 114 

AAOD constraints from AERONET stations (to be discussed below) in a recent assessment of the 115 

climate impacts of BC emissions [2]. Model results were scaled to match AERONET, resulting in a 116 

marked increase in estimated global BC RF, as it was calculated using model-estimated forcing 117 
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efficiencies per unit AAOD. Similar approaches are often used with various underlying assumptions 118 

about aerosol composition and corrections for regional or near-source bias.  119 

In response to this challenge, there is considerable activity in the aerosol science community to 120 

improve knowledge of aerosol absorption. As an indication, Supplementary Figure 1 shows the 121 

recent evolution in the number of publications within the earth sciences dealing with aerosol 122 

absorption in general and in combination with one of the major aerosol species. (For information on 123 

how the selection was made, see the figure caption.) The field has seen a doubling in the number of 124 

publications over a 15 year period. Topically, the literature is moving increasingly from discussing 125 

“aerosols” in general, to focusing on the three main absorbing species. Brown carbon has seen a 126 

sharp rise in interest after 2010, and by 2016 had almost as many publications as the longer standing 127 

topic of dust absorption. Interest in black carbon absorption is also at a record high.  128 

Species-based advances and perspectives 129 

One path towards improved constraints on absorption is to treat the aerosol population as a 130 

collection of individual species – notably BC, BrC and mineral dust. In this section, we discuss known 131 

issues and recent key insights for these species individually. Both physical and optical properties, and 132 

their implementation in present climate models, are treated. We note that although separation into 133 

the categories “BC”, “BrC” and “mineral dust” makes sense in models, where separate sources and 134 

collective properties can be fully specified,  such distinctions will always be idealized. E.g. BC and BrC 135 

both belong to the spectrum of carbonaceous combustion products, which can have a wide range of 136 

properties. However, there is broad agreement that, in practice, there exist general categories of 137 

absorbing aerosols that have distinct physical properties. Understanding and constraining these 138 

properties are crucial first steps towards also constraining total aerosol absorption. Figure 1 139 

illustrates these differences, sketching the present knowledge of imaginary refractive index 140 

wavelength dependence, mass absorption coefficient (MAC) and single scattering albedo (SSA) for 141 

BC, BrC and dust. The bands indicate, but do not exhaustively cover, values that appear in the 142 
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literature. Also, Supplementary Table 1 provides a summary of the issues to be discussed below and 143 

in the next section. For a discussion on the emergent power law behavior of aerosol absorption as 144 

function of wavelength, quantified through the Absorption Ångström Exponent (AAE), see e.g. 145 

Andersson [18]. 146 

Black Carbon (BC) 147 

Black carbon (BC) is a collective term for strongly light absorbing, carbonaceous aerosols, arising 148 

from incomplete combustion of fossil fuels, biofuels, and biomass. BC is one of the aerosol species 149 

that contributes the most to atmospheric absorption under present-day conditions. Different 150 

sources and combustion temperatures give rise to variations in particle structure and shape [5,19]. 151 

Further changes in morphology and hygroscopicity occur as BC particles age, and, in the process, the 152 

particles can grow and mix with other atmospheric constituents, inducing spatial and temporal 153 

variations in their optical properties. 154 

Definition and optical properties 155 

There is still significant ambiguity as to the definition of BC in the scientific literature. However, most 156 

recent studies adhere to the definition of Petzold et al. [8] of BC as “an ideally light-absorbing 157 

substance composed of carbon”, and the more detailed definition by Moosmüller et al. [1] as 158 

“carbonaceous material with a deep black appearance, which is caused by a significant, nonzero 159 

imaginary part . . . of the refractive index that is wavelength independent over the visible and near-160 

visible spectral regions”. The latter property of BC is illustrated in Figure 1, which shows that the AAE 161 

is essentially unity. We note, however, that this might not be the case for collapsed BC aggregates 162 

[20-22] or internally mixed BC [20,22], and should be viewed as a simplifying assumption only. E.g. 163 

Liu et al. [23] recently argued that the BC AAE generally is slightly lower than unity, based on 164 

advanced optical modelling and realistic particle geometries using fractal aggregates. However, we 165 

note that one can not use AAE alone to separate carbonaceous aerosols from dust, since AAE is also 166 

affected by particle size [22]. Consequently, the competing effects of large particle size driving AAE 167 
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downward and hematite concentration driving AAE upward results in pure dust AAEs that can vary 168 

from less than 0 to greater than 3 [20].   169 

Since BC never occurs in the atmosphere as pure carbonaceous matter [8], its optical properties are 170 

highly dependent on particle age, and on atmospheric conditions including the relative humidity and 171 

the availability of gaseous precursors for coating. This challenges both empirical definitions of BC for 172 

use in interpreting observations, and the ability of models to estimate global average absorption by 173 

BC. A 2006 review by Bond, Bergstrom [24] investigated the current theoretical understanding as 174 

well as observations, and proposed a representative MAC value of 7.5 m2g-1 (at 550 nm) for freshly 175 

generated BC. They suggested a range in MAC values from about 5 m2g-1 for collapsed but uncoated 176 

BC, up to about 11 m2g-1 for aged and coated BC (see Figure 1). This range is consistent with more 177 

recent observations, in spite of  a relatively large spread that reflects differences in measuring 178 

techniques, the type of airmass measured, mixing state and proportion of BC in the aerosols [25-27]. 179 

As examples, Cui et al. [28] report average MAC  values around 10 m2g-1 (at 678 nm) for a site in rural 180 

North China; Ram, Sarin [29] find values between 6 and 14 m2g-1 (at 678 nm) at different sites in 181 

India, whereas a lower value of around 6 m2g-1 (at 522 nm) is found for the Arctic [30]. Zanatta et al. 182 

[31] find an annual mean MAC value of 10 m2g-1 (at 637 nm) to be representative of the mixed 183 

boundary layer at European background sites.  184 

Ageing, coating and absorption enhancement 185 

The range of reported MAC values as discussed above reflects that as BC mixes with other aerosol 186 

species, it can become coated, which enhances its absorptive properties, while the fresh fractal 187 

aggregates can collapse, which will reduce the enhancement. These processes is often collectively 188 

termed “BC ageing”, even if sometimes only one of the two is implied. Laboratory experiments [e.g., 189 

32,33,34] find combined enhancement factors (Eabs, defined as the ratio of absoption by aged BC 190 

relative to freshly emitted aerosol) of similar magnitude to those obtained in earlier measurements 191 

[24], but recent observational estimates show a large spread. Bond, Bergstrom [24] recommended a 192 
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global enhancement factor of 1.5, a number which has been widely used in climate models. This 193 

means that assumed MAC values of fresh BC 7.5 m2g-1 would correspond to MAC values of  11 m2g-1 194 

of the aged BC.  195 

Several other studies have investigated Eabs through observations, finding values raging from 1.0 to 196 

3.0. See Supplementary Table 2 (ST2) for a (non-exhaustive) overview of recent observationally 197 

based estimates.  Some of the differences between estimates of Eabs can be attributed to the use of 198 

different instrumentation and methodologies [e.g., 35], variations in the fraction of BC that is 199 

internally mixed [e.g., 21] or dominance of different source contributions to the BC measured [e.g., 200 

36]. A further source of confusion is the difference in baseline, from which the enhancement is 201 

calculated. Although the recommended Eabs of 1.5 represents absorption enhancement from freshly 202 

emitted to fully aged BC, some studies give Eabs values for samples dominated by fresh local sources, 203 

relative to uncoated pure BC [e.g., 32,37]. These Eabs measurements have been categorized as 204 

Eabs,fresh in ST2, and typically show relatively small values. A few studies report enhancement 205 

between fresh and aged BC (Eabs,aged in ST2), and these correspond reasonably to the value of 1.5. Yet 206 

other studies give the enhancement from pure uncoated BC to fully aged, producing in some cases 207 

very high Eabs values [e.g., 28,38]. 208 

In climate models, Eabs is calculated based on mixing state assumptions, or its value is simply set to a 209 

constant number (typically 1.5, as recommended in [24]). There is a large spread in the way models 210 

treat BC, and many models even assume that all BC is externally mixed. This produces substantial 211 

differences in modelled MAC values. For instance, although Boucher et al. [39] use the indications 212 

from observations that MAC values should be somewhere in the vicinity of 10 m2g-1 (at 550 nm) on 213 

average, a multi-model study by Stjern et al. [40] shows a model mean MAC value of 6.3 m2g-1 (at 214 

550 nm), but with individual model values ranging from 3 to 10 m2g-1. These differences contribute 215 

to the large inter-model spread in BC absorption estimates.  216 

New attempts to improve the parametrization of absorption enhancement in models are emerging 217 

in the literature. For instance, Fierce et al. [41] compare absorption enhancement in BC populations 218 
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where the mass fraction of each aerosol component is assumed to be the same for all BC containing 219 

particles, to the enhancement found when using a model that resolves individual particles. They find 220 

that the latter approach yields an Eabs of 1 to 1.5 at low relative humidity, consistent with ambient 221 

observations, whereas if a population-averaged composition is assumed across all BC-containing 222 

particles, absorption is strongly overestimated (Eabs > 2).  223 

Liu et al. [42] use a generalized hybrid model approach for estimating scattering and absorption 224 

enhancements based on laboratory and atmospheric observations. They developed a method for 225 

determining when the BC is significantly enhanced by non-BC, based on the relative mass ratio of 226 

non-BC to BC in a single particle, which was already known to be important for Eabs [25,26]. Where 227 

the relative mass ratio is less than 1.5, (e.g., coatings typical of fresh traffic sources), BC is best 228 

represented as having little or no bulk absorption enhancement (Eabs = 1.0-1.4). For ratios greater 229 

than 3 (typical of aged biomass-burning emissions), BC is best described assuming optical lensing 230 

leading to an absorption enhancement (Eabs > 1.6). (We note that the term “lensing” is a geometric 231 

optics concept that has little meaning for sub-wavelength particle sizes, as is typical for combustion 232 

aerosols. However, we acknowledge that the term is widely used by the community and has a clear 233 

definition.) These developments are steps toward improving the representation of BC absorption in 234 

models.  235 

Residence time, vertical profiles and emission inventories 236 

Although absorption enhancements due to ageing is a key topic in recent BC literature, a number of 237 

other poorly constrained factors also contribute to the present spread in model results. As the 238 

absorption of an aerosol layer depends upon the albedo of the underlying surface, both the average 239 

residence time of atmospheric BC and its vertical concentration profile will influence absorption 240 

estimates and environmental impacts. For example, the HIPPO flight campaigns over the Pacific 241 

highlight a tendency in models to overestimate BC concentrations aloft [43], consistent with a 242 

general overestimate of residence time in the models [44]. Uncertainty in BC emission inventories is 243 
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a further factor. Estimated global, annual mean emissions range from 4-14 Tg y-1 [45,2,46]. Recently, 244 

Wang et al. [47] used a high resolution emission inventory over Asia, in combination with AERONET 245 

data, to further constrain BC AAOD through a Bayesian framework. They found significantly 246 

improved agreement when high resolution emissions were used, but also strong sensitivity to 247 

assumptions regarding BC ageing and transport. We discuss this study further below.  248 

Recent developments in instrumentation are covered in  subsequent sections on BrC and 249 

measurements.  250 

Brown Carbon (BrC) 251 

Brown Carbon (BrC) is a catch-all term for the absorbing components of organic carbon aerosols 252 

(OA), which unlike BC, absorbs strongly at short wavelengths, but less toward the near-infrared part 253 

of the spectrum. Figure 1 shows the presently weak constraints on BrC optical properties, and the 254 

broad range of values that might actually apply under different circumstances. For a recent 255 

overview, see e.g. Feng et al. [48], and references therein.  256 

BrC is thought to be emitted primarily from biomass and biofuel burning [49-51], but it has also been 257 

seen in incomplete combustion of fossil fuels [52] and as a secondary organic aerosol [53-55].  258 

A particular form of brown carbon that has received much recent attention is called tarballs; 259 

amorphous carbon spheres with mode diameters that range from about 100 to 300 nm, but 260 

individual particle sizes ranging from ∼25 nm to over 1 µm [56-58]. 261 

These near-perfect spheres are formed by gas-to-particle conversion during periods of high PM 262 

concentrations. They are larger than soot spherules, and lack the graphitic plate-like structure of 263 

soot. Tarballs are similar in composition to other organics [59,60], but they are hydrophobic at 264 

relative humidities (RH) less than about 83% [56]. They can become soluble and weakly hygroscopic 265 

when RH > 83%, but they do not deliquesce. Consequently, the spheres retain their shape and 266 

remain largely isolated, although aggregation is sometimes observed [56]. 267 
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Tarballs occur in almost all smoke from biomass burning, independent of fuel type [58]. Biofuel 268 

burning can also create tarballs, and Alexander et al. [57] found them to be ubiquitous in the East 269 

Asian Pacific outflow. The proportion of tarball particles in smoke increases as the smoke ages, and 270 

can dominate the carbonaceous aerosol contribution within minutes; because it takes time for the 271 

gas-to-particle conversion process to form tarballs, and other aerosol quantities are simultaneously 272 

decreasing with age [58]. 273 

Tarballs are more strongly absorbing than other forms of brown carbon when measured in isolation. 274 

Alexander et al. [57] used electron energy-loss spectrums in transmission electron microscope 275 

images to estimate a mass absorption efficiency of 3.6 to 4.1 m2 g−1 at 550 nm for individual tarballs. 276 

This is significantly greater than the values that we present for brown carbon in Figure 1, and 277 

significantly less than the value of 7.5 m2 g−1 recommended by Bond, Bergstrom [24] for soot 278 

carbon. Alexander et al. [57] determined an imaginary refractive index of k(550) = 0.27 for the 28 279 

tarballs that they analyzed, which is also intermediate of humic-like brown carbon and soot carbon. 280 

Aerosol transport models at present generally do not include tarballs as a separate species from 281 

brown carbon, but that is appropriate given that tarballs, brown carbon, and organic carbon are not 282 

separatable by mass with current measurement techniques. 283 

Distinguishing BrC from BC 284 

Although the differences in spectral absorption between BC and BrC are profound, making it 285 

possible to distinguish the two observationally, considerable effort is still required to characterize 286 

the composition and microphysical properties of BrC. This includes its absorption cross section and 287 

subsequent impact on global aerosol radiative forcing. Also, we note that modelling studies still 288 

sometimes use the term “black carbon” to include all non-dust absorbing aerosols, despite the vast 289 

differences in particle properties that are especially important for climate forcing calculations. Such 290 

unclear terminology can create significant issues when interpreting model results [5,8,61]. 291 
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Recent studies indicate a positive, global BrC RF ranging from 0.1 to 0.6 Wm-2, based on remote 292 

sensing [62,63,47] and transport modelling [64,48,65,50,66-68]. The spread in results is likely 293 

affected by differing assumptions on BrC composition, optical properties, emissions and transport. 294 

The microphysical properties of absorbing OA are also likely to be highly sensitive to particle 295 

formation processes, and to the details of their evolution in the atmosphere.  296 

In an attempt to constrain the relative absorption contributions from BrC and BC from combustion 297 

emissions under controlled conditions, Pokhrel et al. [35] recently reported measurements for a 298 

wide range of biomass fuels. At 405 nm, they find that BrC contributes of up to 92% of total 299 

absorption, but this fraction declined to 58 % at 532 nm. Critically, they also report that the BrC 300 

component varies by a factor of two between analysis assumptions commonly made in the 301 

literature. Absorption enhancement due to lensing from coating, as discussed for BC above, provides 302 

a further complication, as fresh BC and BrC may be coated with partly absorbing organics. For 303 

example, Saleh et al. [50] found a strongly nonlinear interplay between absorption and lensing for 304 

organic aerosols, and Pokhrel et al. [35] note that results on lensing are highly method and model 305 

dependent. Further, it has been suggested that BrC may lose its absorbing properties as it ages, on 306 

relatively short timescales of hours to days. Recently, instrumentation has become available 307 

allowing quantification of this effect under field conditions [69-71]. However, to our knowledge it is 308 

not presently implemented in global models, and may lead to significant revisions in the partitioning 309 

of total absorption between BC and BrC at short wavelengths.  310 

 311 

BrC atmospheric absorption 312 

Accounting for BrC absorption in the atmosphere has also seen rapid development, mainly 313 

employing spectrally resolved observations from AERONET. Initially, AAE=1 was often assumed for 314 

BC, and any nonlinearities subsequently ascribed to BrC (see e.g. Olson et al. [52], and refs therein). 315 

Some studies refined this by grouping observational sites by region, and estimating optical 316 
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parameters based on assumed single-source observations [e.g. 72,63]. However, other authors have 317 

demonstrated that AAE does not contain enough information to unambiguously speciate the 318 

absorbing aerosols. See, in particular [22], and references therein. Briefly, AAE is affected by size; 319 

consequently the AAE of dust can hold a wide range of values (including less than 1), which in turn 320 

means that one can not use AAE alone to separate carbonaceous aerosols from dust.  321 

Wang et al. [71] recently reported another approach that instead uses theoretical Mie calculations 322 

for BC, and no source assumptions. They find a global BrC absorption contribution of up to 40% of 323 

total carbonaceous aerosol absorption at 440 nm, and a mass absorption coefficient for OA (here 324 

defined as the total group of organic aerosols in the GEOS-Chem model) that positively correlates 325 

with the BC-to-OA mass ratio. Detailed analysis at two urban sites revealed no significant ageing 326 

effect on the MAC value, whereas it was found to decrease with a half life of 1 day at a biomass 327 

burning site. This indicates, consistent with several other studies, that BrC properties cannot be 328 

taken as globally uniform. 329 

Recently, some regional constraints on BrC absorption and vertically resolved abundances have 330 

become available from aircraft observations [68,73,74]. Zhang et al. [68] show that over the 331 

continental United States in May to June 2012, BrC was prevalent throughout the troposphere. As 332 

the climate responses to absorbing aerosols change with altitude [75], the authors suggest that high 333 

altitude BrC lofted from biomass burning events should be further studied. This was for instance 334 

done by Peterson et al. [76], who developed a satellite-based inventory for pyrocumulonimbus 335 

clouds, which can elevate smoke particles into the upper troposphere and even the lower 336 

stratosphere. Promisingly, they find good correspondence between combined BC and BrC 337 

absorption determined from merging aircraft observations with radiative transfer calculations, and 338 

that obtained from remote sensing results from OMI at two wavelengths (see below).  339 



Under revision for Current Climate Change Reports V3.5 13.02.2018 

15 
 

BrC (and BC) instrumentation 340 

Recently, there has been great improvement in instrumentation for in situ observation, and 341 

separation, of atmospheric BC and BrC. Since the mid-2000s, many long-term monitoring sites and 342 

aircraft campaigns have used instruments such as the 3-wavelength PSAP (Particle Soot Absorption 343 

Photometer) instrument, but due to its limited wavelength range (467, 530, 660 nm), spectral 344 

separation of BC and BrC is difficult. Seven-wavelength aethalometers, which are widely deployed at 345 

surface sites around the world, are better able to segregate BC and BrC [77,52,78,79] due to their 346 

extended spectral range (from ultraviolet to near-infrared), but still have issues because in real 347 

situations the AAE of BC varies with particle size and mixing state. A serious potential limitation of 348 

filter-based absorption instruments such as PSAPs and Aethalometers is that by collecting the 349 

aerosol on a filter the particles’ physical and thus optical properties may be changed.  Lack et al. [33] 350 

showed that PSAPs may overestimate absorption relative to photo-acoustic instruments, depending 351 

on the amount of organic aerosol present.  Filter-based instruments at long-term monitoring sites 352 

are typically operated to measure at low RH (<40%) (e.g., [80]); the drying required to achieve these 353 

RH levels can also affect the resulting absorption measurement, although the magnitude of this 354 

effect has not yet been quantified. The recent aircraft measurement papers cited above use a 355 

combination of CRD (Cavity Ring-Down) and SP2 (Single Particle Soot Photometer) measurements. 356 

These instruments are much more sensitive to extinction or particle size, and can compute 357 

absorption from size distributions using assumptions about BC density and refractive index. 358 

However, they are difficult to operate unattended, precluding long-term, automated measurements. 359 

They also typically operate at non-ambient temperature and relative humidity conditions, as the 360 

sample air is brought into the aircraft and instrument.  Upcoming campaigns will add photo-acoustic 361 

instruments, or the CAPS PM_ssa.  Both the CAPS PM_ssa as well as some photo-acoustic 362 

instruments (e.g., the DMT PASS and PAX instruments;[81]), have the advantage of using the same 363 

sample volume to measure scattering and extinction to obtain SSA. This is a great improvement over 364 

previous in situ methods that required at least two instruments to determine SSA.  365 
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Mineral dust 366 

Wind-blown mineral dust is thought to be the most abundant atmospheric aerosol by mass, at least 367 

in most global aerosol models [82,83], and influences both shortwave and longwave radiation. Given 368 

its high abundance, absorption from dust can dominate that of black and brown carbon in some 369 

regions and seasons [84]. However, even though there is significant variability in the regional 370 

composition and spectral absorption of mineral dust [e.g., 85,86] models typically use a single dust 371 

“type” and ignore regional dependencies of the complex refractive index. Absorption of aeolian dust 372 

is mainly caused by the minerals hematite and goethite, but the refractive indices of these minerals 373 

are not well known despite their impact on derived forcing [87]. There is significant variability in the 374 

published refractive indices of hematite [20] and we know of only two studies that presents goethite 375 

refractive indices [88,89]. Given the prevalence of goethite [90,85,91] and the important role that 376 

this mineral plays in altering the AAE of  dust aerosols, more work is needed to characterize the 377 

refractive index of goethite and incorporate regional refractive index variability associated with the 378 

hematite/goethite ratio into global models. 379 

Figure 1 indicates the range of optical properties attributed to mineral dust. As with BrC, it is usually 380 

taken to have an AAE significantly larger than 1 (see e.g. [92]), although it can attain a very wide 381 

range of values depending on the actual ratio of minerals in the sample. Recently, Ridley et al. [93] 382 

used observations to constrain the dust AOD from the AeroCom Phase 2 model median of 0.023 383 

(0.010 to 0.053) [94] to 0.030 (0.020 to 0.040), slightly increasing the AOD estimate and significantly 384 

reducing the spread. But many sources of model uncertainty and biases in dust absorption estimates 385 

remain, related to optical properties, in part because complex particle shapes are exceedingly 386 

difficult to model, but also because size distributions, shape, composition, and source terms are 387 

highly variable and poorly constrained by observations. 388 
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Loading and size distributions 389 

Using satellite as well as ground based measurements to constrain the global dust loading and its 390 

size distribution, Kok et al. [83] find that models overestimate emissions of fine dust and 391 

underestimate emissions of very coarse dust. Fine dust (D ≤ 2 µm) with sizes on the order of solar 392 

wavelengths produce the largest shortwave scattering impact per unit aerosol mass (so generally 393 

cooling), whereas larger particles (diameter similar to wavelength of terrestrial radiation) have the 394 

largest longwave absorbing effect (so warming), based upon results from one global model [95]. 395 

Compared to fine dust, larger dust particles have stronger absorption in the solar spectrum as well 396 

[83]. Therefore, the size bias in dust emissions means that models will tend to underestimate the 397 

solar absorption by dust, as found from satellite/lidar measurements over the global oceans in 398 

Lacagnina et al. [96]. Another bias, limiting constraints on both extinction and absorption from dust, 399 

may arise from the tendency of models to approximate dust aerosols as being spherical in shape. 400 

Kok et al. [83] compare the dust extinction efficiency of spherical dust to that of tri-axial ellipsoids 401 

[97], and find the model assumption of sphericity to underestimate dust extinction efficiencies by as 402 

much as 20-60% for dust larger than 1 µm. Non-spherical scattering models that can accomodate 403 

distributions of complex particle shapes and orientations with reasonable computational speed have 404 

not been developed thus far. Spherical or ellipsoid models used as basis for radiative flux 405 

calculations do not seem to work well for radiance-based satellite retrievals of dust AOD, e.g., from 406 

MISR [98]. Further, there is considerable variation and uncertainty in the absorption properties of 407 

dust from different sources [4], and observational constraints are difficult to apply to climate models 408 

due to a lack of adequate optical models, particularly single-scattering phase functions, for coarse-409 

mode non-spherical dust of all types [e.g., 98]. Some models do use spheroids, showing that 410 

treatment of non-spherical dust is possible [99]. The lack of optical characterization of goethite in 411 

the literature is critical since this is the most abundant form of iron oxide in dust [100], and the 412 

major light absorber in the shortwave spectrum [101].  413 
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Composition 414 

Di Biagio et al. [102] performed in situ measurements of a number of different soils from eight 415 

different regions, and found that although the fraction of scattering by the different dust types 416 

varied little, there was great variation in the light absorption from region to region and also for 417 

various sources within regions, with significant correlations to mineralogical composition. They 418 

suggest that using regionally dependent refractive indices rather than generic values can yield 419 

significant improvements in modelling of dust radiative effects. Similarly, e.g., Engelbrecht et al. 420 

[103] measured size distributions and the spectral SSA of surface dust from 18 countries (including 421 

China, USA, Australia and multiple countries in Africa).  Although they reported a range of SSA 422 

values, at 550 nm almost all dust samples had SSA > 0.95. 423 

Multi-species, model-based constraints 424 

Climate models try to combine the contributions to atmospheric absorption from several species 425 

into one estimate of the total global aerosol absorption, which can in turn be validated against 426 

observations. However, due in part to the issues raised above, inter-model differences in predicted 427 

AAOD are very large, even when using consistent emissions and nudged or prescribed meteorology. 428 

This issue was introduced in the Motivation section above, using the results from AeroCom Phase 2 429 

[12]. Figure 2 further illustrates this, showing AAOD evaluated at 550 nm by the 16 global aerosol-430 

climate models participating in that intercomparison. Some overall features are well captured by all 431 

models, including absorption by anthropogenic and biomass burning BC over Asia, Europe, Africa 432 

and South America, dust from northern Africa and central Asia, and BrC from the major biomass 433 

burning regions for the few models that had included this component. (The yellow shaded parts of 434 

the figure show results from a single model as illustration.) The multi-model relative standard 435 

deviation (Figure 2, upper right) rarely goes below 50%. We note that it is lowest over high 436 

anthropogenic emission regions, where emissions were identical for all models. However, the 437 

relative standard deviation is very high over dust-emission regions, as dust emissions were not 438 
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specified in the AeroCom exercise, but were estimated by each model based on meteorology for the 439 

same year. Also, for most models, a single dust “type” was assumed. One clear example of the 440 

implication of this assumption is the high absorption seen over the Bodélé depression (Chad, Central 441 

Africa), which is high in dust loading, but where the composition is mainly non-absorbing diatoms 442 

[104].  443 

Most of the AeroCom models have undergone some degree of validation against observations, and 444 

the multi-model median holds up well when broadly evaluated against recent satellite remote 445 

sensing products (e.g. [96], see further discussion below). However, such an array of assumptions 446 

goes into these model calculations that it is difficult to assess the value of the (weak) multi-model, 447 

global-average constraint provided (0.0042 ± 0.0019). Consistency among models can arise due to 448 

common assumptions and/or tuning (see e.g. [105]).  449 

Another path towards model-based constraints is to combine information from multiple satellite 450 

retrievals with the full spatial coverage of a single numerical model, as done in the Monitoring 451 

Atmospheric Composition and Climate (MACC) project [106]. Here, model simulations are 452 

assimilated with MODIS retreivals of AOD (550nm) and AERONET information on SSA, to derive 453 

AAOD. The use of assimilation combines global aerosol modelling and observations, and adds an 454 

additional layer of information relative to the earlier, purely observational, methods combining 455 

satellite and AERONET data [107,108]. MACC estimates a global, total AAOD of 0.008±0.002 (i.e. 456 

almost twice that of AeroCom Phase II), mainly from anthropogenic sources (which include all 457 

biomass burning emissions) (0.007±0.001), with the remainder being ascribed to mineral dust 458 

(0.001±0.001).  459 

Observational advances and perspectives 460 

In the following, we discuss recent developments and known issues for ground and space-based 461 

remote sensing, and in situ measurements via regional flight campaigns and long term surface 462 
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monitoring sites. Presently, there is no practical way to provide global, self-consistent 463 

measurements from a single source that sufficiently constrains aerosol absorption for global 464 

modeling purposes. Still, satellite, aircraft and surface station information can be used to validate or 465 

constrain global models, and therefore provide key, underlying constraints on climate scenarios and 466 

predictions.  467 

Column aerosol absorption (i.e., AAOD) can, in principle, be retrieved from ground and space-based 468 

remote sensing platforms, though with uncertainties that limit their direct application for detailed 469 

climate forcing calculations [e.g., 109].  New instrumentation is in development that will provide a 470 

better understanding of the physical processes and hence the means to parameterize absorbing 471 

aerosol, but existing observational networks and datasets also provide crucial information. In situ 472 

observations can provide the most accurate observational constraints on aerosol spectral absorption 473 

and, depending on the instrument, such measurements likely meet the first-order requirements for 474 

climate forcing calculations [9; 61]. In situ measurements from aircraft have limited spatial and 475 

temporal coverage, whereas in situ measurements from long-term surface sites can provide the 476 

temporal coverage and hence climatology, but again spatial coverage is limited, and transported 477 

aerosol might not be sampled adequately by in situ surface stations.   478 

Remote sensing by ground stations 479 

Sun photometers at AErosol RObotic NETwork (AERONET) sites [110] provide AAOD retrievals at up 480 

to 600 locations around the globe, around 30 % of which are in urban locations. As a long-running 481 

measurement network, AERONET provides invaluable climatological aerosol information, however 482 

only a very few sites have operated consistently for the full range of about 20 years. Proper care 483 

must therefore be taken when selecting sites for climatological and/or trend absorption analyses. As 484 

with all passive ground based technologies, AERONET can only observe total column properties. The 485 

AERONET algorithm also retrieves the aerosol complex refractive index, but it assumes it to be the 486 

same for all particle sizes in the atmospheric column [111]. Additionally, Level 2 absorption products 487 
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such as AAOD require solar zenith angle >50 ° and AOD > 0.4 at 440 nm. As AOD > 0.4 is uncommon 488 

([112], their Figure 1; the global average AOD at 440 nm is not far above 0.14), this requirement 489 

means that Level 2 AAOD information is limited, and skewed towards conditions of high aerosol 490 

loading.  491 

As the largest ground based network capable of constraining column AAOD, AERONET has recently 492 

been used to provide constraints on models [113], to estimate BC emission inventories [114], and to 493 

scale estimates of radiative forcing [2,47]. Russell et al. [115] recently showed how a cluster analysis 494 

of AERONET particle property retrievals can be combined with global-scale, multi-angle, multi-495 

spectral, polarized measurements from the POLDER (Polarization and Directionality of the Earth’s 496 

Reflectances) satellite instrument, to classify observations in terms of aerosol types, providing 497 

qualitative constraints on aerosol properties, including AAOD.  498 

Schuster et al. [20] use the AERONET  imaginary refractive index retrievals and published refractive 499 

indices to infer the relative abundance of BC, BrC, hematite, and goethite, using an end-member 500 

mixing approach. They utilized AERONET data at biomass burning sites and dust-dominated sites to 501 

illustrate that an imaginary index of k = 0.0042 at the 675-1020 nm wavelengths robustly separates 502 

“pure” carbonaceous from “pure” dust aerosols. By further assuming that the spectral dependence 503 

of the AERONET imaginary refractive indices are associated with BrC or free iron, and that most BrC 504 

resides in the fine mode while most free iron resides in the coarse mode, they were able to retrieve 505 

regional and seasonal column loadings of absorbing aerosols that are consistent with expectations. 506 

They estimate an uncertainty of about 50% or better for BC and 100% or better for free iron. 507 

A recurring question in recent literature has been what requirement should be set on total AOD for 508 

AERONET to give a good AAOD retrieval. As input to this, AERONET has been extensively compared 509 

with various types of airborne in situ measurements. These were recently summarized in Andrews et 510 

al. [116]. See Supplementary Figure 2, left panel, adapted from data used in that study. The authors 511 

compare results from two US continental AERONET sites with in situ profiles from aircraft 512 
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observations, with emphasis on low aerosol loading conditions. They confirm a previously reported 513 

tendency for AERONET inversions to overestimate absorption at low AOD values, suggesting a bias in 514 

either the retrievals or the in situ techniques. Previously, Kahn et al. [117], in a similar analysis 515 

comparing AERONET with MISR satellite data, attributed underestimates in AERONET SSA at least 516 

partly to methodological differences in measurements of AERONET direct-sun extinction and sky 517 

scan scattering quantities. These points further suggest caution in using AERONET to scale global 518 

model results, and brings into question the assumption that AERONET SSA values retrieved at high 519 

and low AOD conditions can be used to obtain AAOD at low AOD conditions (e.g. [96], [118]). Thus 520 

AERONET SSA may not be representative of all loading conditions and/or seasons.   521 

A further issue to note is vast differences in sampling size between most global models, at 522 

resolutions of 1°x1° or coarser, and AERONET point measurements. Using a high resolution emission 523 

inventory for Asia, a nested climate model and downscaling techniques, Wang et al. [47] recently 524 

explored the impact of model resolution on model-AERONET bias and, subsequently, radiative 525 

forcing of BC. The analysis was made at 900 nm, where BrC was assumed not to contribute to 526 

absorption. Contributions from dust were estimated by assuming a set of spectrally-dependent 527 

optical parameters. They found significant reductions in bias when using high-resolution modelling 528 

and emissions, and a reduction in predicted RF when using methods similar to previous studies. This 529 

is not surprising, as aerosol abundances are known to vary on small spatial scales compared to 530 

typical global-model resolution. It does, however, strongly indicate a need for higher resolution 531 

approaches to aerosol modelling if climate impacts are to be estimated with confidence.  532 

Remote sensing by satellites 533 

Several space-borne remote sensing instruments are currently capable of constraining aerosol 534 

absorption, at least qualitatively. Here, we discuss recent evaluations of MISR, OMI and PARASOL 535 

retrievals. 536 



Under revision for Current Climate Change Reports V3.5 13.02.2018 

23 
 

The EOS Multi-angle Imaging SpectroRadiometer (MISR) flies aboard the NASA Earth Observing 537 

System’s (EOS) Terra satellite. It provides categorical constraints on particle size, shape, and 538 

absorption properties, distinguishing about 3-5 bins in particle size, 2-4 bins in SSA, and spherical vs. 539 

randomly oriented non-spherical particle shape under good but not necessarily ideal retrieval 540 

conditions [77,119].  From multi-angle, multi-spectral remote sensing, aerosol type retrievals are 541 

much more sensitive to retrieval conditions than AOD.  The MISR Standard aerosol retrieval 542 

algorithm runs automatically on the (approximately once-weekly) global dataset, with a climatology 543 

of 74 candidate aerosol mixture optical models, providing about a dozen aerosol-type distinctions 544 

where conditions warrant. The current MISR Standard algorithm (Version 22) tends to 545 

underestimate the occurrence of absorbing particles relative to ground (AERONET) measurements in 546 

situations where such particles are present, due in part to limitations in the algorithm particle 547 

climatology [120].  A more recent Research Algorithm, allowing many more aerosol component 548 

options, hundreds of candidate mixtures, empirical calibration refinement, and advanced surface 549 

modeling, can retrieve more information, particularly about particle absorption, and under a 550 

broader range of retrieval conditions, but only for individual case-studies due to practical 551 

considerations [121,122].   552 

When many aerosol mixtures pass the MISR algorithm acceptance criteria, as frequently occurs 553 

when the AOD falls below about 0.15 or 0.2 [64; 109], there might be too little information in the 554 

observed MISR radiances to constrain aerosol type.  Aerosol transport models, however, identify 555 

aerosol properties based on downwind advection from specified sources, so AOD is generally not a 556 

limiting factor. Li et al. [123] used model information to refine MISR aerosol microphysical property 557 

retrievals in conditions where many mixtures passed. They were able to trace remaining differences 558 

between the model, the constrained retrieval, and ground truth primarily to underestimations of 559 

AOD and AAE by the model in polluted regions, and missing aerosol types in the MISR product. 560 
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Another orbital platform frequently used to constrain aerosol light-absorption is the Ozone 561 

Monitoring Instrument (OMI) aboard the NASA EOS Aura satellite. Providing information mainly in 562 

the ultraviolet, it is able to retrieve AOD and AAOD at 388 nm. The retrieval interprets aerosol 563 

absorption of upwelling, Rayleigh-scattered light from below and depends in part on having good 564 

constraints on the aerosol vertical distribution. The sensitivity of this approach improves for 565 

elevated vs. near-surface aerosol.  Recently, OMI has been used to help validate the MERRA-2 (and 566 

the earlier MERRAero) re-analyses based on the GEOS-5 model [124,125]. In general, the retrieval 567 

and reanalysis are in good agreement. However, a general overestimate by MERRA2 over land was 568 

observed. In a set of regional analyses, they focus on the Sahara (for dust), Africa and South America 569 

(for biomass burning aerosols) and Asia (anthropogenic mix). Dust AAOD reanalysis was improved by 570 

implementing recent updates to optical properties [126], whereas observed mismatches in the 571 

biomass burning regions were attributed to insufficient treatment of absorbing organic carbon (i.e. 572 

BrC). Over Asia, much of which is dominated by anthropogenic emissions, they point to emission 573 

inventories as a main source of uncertainty. However, possible impacts of aerosol absorption 574 

enhancement by rapid coating (the lensing effect mentioned previously) in high pollution 575 

environments [38] were not systematically discussed. In another recent study, Zhang et al. [127] use 576 

OMI AAOD to constrain BC abundances and emissions over Asia with the adjoint of the GEOS-Chem 577 

model. Using an optimization technique, they were able to significantly reduce model biases against 578 

AERONET and in-situ ground truth at urban sites. Their results are similar to those of Wang et al. 579 

[47], indicating that greater regional specificity in emission inventories and additional constraints 580 

from space-based instruments can resolve a large fraction of the present uncertainty in BC emissions 581 

and concentrations.  582 

The ESA PARASOL instrument measures polarization along with multi-angle, multi-spectral 583 

observations. The GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) aims at 584 

gleaning information about absorbing aerosols from these data [128,129].  Early work with this 585 

algorithm shows considerable promise in constraining particle size distributions and indices of 586 
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refraction over a range of conditions.  In particular, the added polarization information helps 587 

constrain both particle size and real refractive index, which contribute to the retrieval of particle 588 

absorption. As applied to the POLDER instruments aboard PARASOL, sensitivity to coarse-mode 589 

particles is limited by a lack of wavelengths longer than 910 nm, and relatively coarse spatial 590 

resolution (6 km at nadir) complicates interpretation of retrievals where the surface or aerosol vary 591 

on kilometer scales.  Lacagnina et al. [96] performed a thorough evaluation of PARASOL Standard 592 

Product AAOD versus AeroCom models, AERONET ground stations and OMI, but only for ocean 593 

regions. They found that the ground and satellite remote sensing data compared well for AOD and 594 

AAOD (and SSA). The AeroCom models compared well against the remote sensing data for AOD, but 595 

the models produced much lower values for AAOD than the remote sensing data. 596 

One critical issue for constraining the total climate effect of absorbing aerosols is their impact when 597 

located above clouds. In such cases, the high underlying albedo will enhance shortwave absorption, 598 

but both satellite and ground-based remote sensing have problems detecting the aerosol layer. 599 

Recently, improvements have been made by several satellite teams, leading to better constraints on 600 

above-cloud absorption. One method uses total and polarized radiances measured by POLDER, and 601 

has been shown to be efficient for detecting aerosols above clouds over the southeast Atlantic 602 

Ocean, Siberian biomass burning, and Saharan dust above clouds off the northwest coast of Africa 603 

[130].  For example, Peers et al. [131] recently compared the absorbing aerosols above clouds off 604 

the southwest coast of Southern Africa from the POLDER retrivals with several AeroCom models, 605 

and found that all models have lower AAOD above clouds compared to POLDER. The lower AAOD in 606 

models was primarily ascribed to lower AOD above clouds, but for those models showing reasonable 607 

AOD above clouds, the SSA was higher than in POLDER.  Another method uses near-UV observations 608 

from OMI, simultaneously deriving the optical depth of the aerosol layer and the underlying cloud. 609 

This method has been tested with good results over the southern Atlantic Ocean [132]. Chand et al. 610 

[133] present a “color ratio” method, applied to CALIPSO data, to detect fine-mode, generally 611 

absorbing anthropogenic aerosol over cloud.  Several groups expanded on this idea, using MODIS 612 
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multi-spectral observations to simultaneously derive aerosol and underlying cloud optical thickness 613 

[134-137].  Yet another recent development is the use of geostationary satellite data from the 614 

Spinning Enhanced Visible and Infrared Imager (SEVIRI) in conjunction with A-Train [138]. Although 615 

no full constraint on above-cloud aerosols absorption yet exists, rapid progress is being made in this 616 

crucial area. 617 

In situ  surface stations  618 

Unlike remote-sensing retrievals, surface in situ measurements are not limited to daytime or cloud-619 

free conditions, thus high temporal-resolution patterns can be studied.  Additionally, measurements  620 

of absorption can be made at quite low near-surface loading conditions. Several networks are in 621 

operation, including IMPROVE, GAW and the Environmental Protection Agency’s STN (Speciation 622 

and Transport Network). One drawback of surface in situ networks is their limited spatial coverage – 623 

although the US and Europe support multiple surface networks making BC and/or aerosol 624 

absorption measurements with varying coverage density, other regions are much more sparsely 625 

represented.  626 

Although measurements  from surface in-situ networks have been and continue to be used to 627 

evaluate model simulations of BC and dust [e.g., 139,140-143,99,144], one enduring issue for the 628 

comparison to be valid is ensuring that the measured quantity is the same as the modeled quantity 629 

[e.g., 61,9]. The continuous nature of surface measurements means they can be used for trends 630 

studies [e.g., 145,146] , climatologies in various regions [e.g., 140,31] and  investigating inter-annual 631 

variability [e.g., 147].  632 

In situ aircraft measurements 633 

Fully constraining the vertical profiles of aerosol abundances, and hence absorption, should ideally 634 

be done in situ, using intruments in aircraft, balloons or, possibly, drones [148]. Recently, wider 635 

availability of high quality instrumentation such as the SP2 have led to greatly improved 636 

measurements of vertically resolved concentrations, both from campaigns targeted at specific 637 
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processes, regions and/or seasons (e.g. A-FORCE [149], CLARIFY, SAMBBA [150]), and near-annual-638 

mean coverage in remote regions (HIPPO [43], ATom; https://espo.nasa.gov/atom). However, flight 639 

information will always be limited in spatial and temporal coverage, relative to the wider view of 640 

satellites, and the continuous operation of some ground stations. Sampling issues therefore quickly 641 

arise when using aircraft data to constrain or validate models, as plumes or layers may be missed by 642 

the flights, while also being below the resolution of the models [151].  643 

Above, we have discussed how dedicated flights were used to validate two particular AERONET sites 644 

[116], and how recent SP2 measurements indicate a significant loading of BrC at high altitudes over 645 

the continental US [68]. Several groups also use flight information to constrain aerosol optical 646 

properties in a given regions. E.g. Lan et al. [37] find from a flight campaign in an urban South China 647 

atmosphere MAC of BC at 532 nm averaging 6.5 m2 g-1. A further use for aircraft measurements is to 648 

aid in constraining the radiative contribution of aerosol above clouds, as discussed above.  649 

Even if it is sparse, the flight information available could be better utilized for constraining both 650 

models and retrievals. A first step is ensuring easy availability of consistent dataets. Here, recent 651 

initiatives such as the GASSP database [152] should be of great use in the future. Also, there is great 652 

potential in more systematic deployment of aircraft measurements, to constrain the average optical 653 

properties of aerosols in a given region and season. We discuss this further below.  654 

As alluded to in the discussion of in-situ BC instruments above, one issue that affects both surface 655 

and airborne in-situ measurements of absorption is relating them to the ambient reality. In-situ 656 

measurements have a tendency to change the sampling conditions (e.g., T, RH) from ambient.  Some 657 

work has been done to couple SP2 with other systems to assess the hygroscopicity of absorbing 658 

aerosol (e.g., [153,154]) which may be useful for adjusting absorption measurements to ambient 659 

humidity conditions.  Another issue is the  possible volatilization of condensed material (thus 660 

possibly changing the lensing effect) during sampling, particularly if heating is used to bring the 661 
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sample air down to a desired measurement humidity.  Switching to diffusion driers or dry air dilution 662 

systems  may minimize this potential volatilization effect for in-situ measurements.   663 

A roadmap towards improved constraints on aerosol absorption 664 

In this review, we have defined a constraint as an agreement between observational and 665 

theoretical/model based estimates of aerosol absorption, combined with an understanding of why 666 

the two are similar. At present, the field cannot provide such constraints. However, there is rapid 667 

progress on both fronts, and an encouraging increase in communication between the observational 668 

and modelling communitites. In Table 1, we suggest a roadmap towards improved constraints, that 669 

includes model development, implementation of additional observational capabilities, and – 670 

crucially – increased adoption of common terms and definitions.  671 

In summary, global and even regional-scale mapping of aerosol absorption remains challenging. No 672 

single source, models, in situ measurements, or satellite observations alone, appears capable of 673 

providing the needed information to constrain absorption at the accuracy required for climate 674 

forcing applications, with adequate spatial and temporal coverage.  Yet, taken together, this goal 675 

may still be achievable.  Satellites offer frequent, global coverage, and can map aerosol air mass 676 

types qualitatively, and with better constraints, under a wider range of observing conditions, when 677 

multi-angle, polarization data are acquired over a spectral range covering the near-UV to the near-678 

IR.  Details of particle absorption are best obtained from systematic, in situ measurements within 679 

the major aerosol air mass types.  Although surface-based in situ measurements of aerosol 680 

absorption covering a range of air mass type exist due to the efforts of multiple monitoring 681 

networks, above-ground sampling is needed to adequately characterize transported aerosol types, 682 

and vertical profiles of in situ aerosol properties would better serve our ability to tie together 683 

satellite, remote sensing and modeled absorption.  Although such data are currently lacking in most 684 

cases, a climatological subset of key aerosol optical measurements has been acquired systematically 685 

within a single geographical region/altitude [155,156], and a concept for comprehensive, global 686 
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measurements of this type has recently been presented [157].  Once an extensive database of 687 

detailed particle optical and microphysical properties is acquired in situ, including PDFs of particle 688 

hygroscopicity, mass extinction efficiency (needed to translate between aerosol optical depth 689 

retrieved from remote sensing and aerosol mass book keeping in models), and aerosol spectral 690 

absorption, these can be associated with the aerosol air mass types mapped from space [109].  691 

Models can contribute to this overall picture by helping constrain the results where the satellite 692 

aerosol type retrievals are ambiguous [e.g., 123], or are lacking, e.g., due to cloud cover, and the 693 

model can then in turn be constrained and/or validated by the aggregated observations.   694 

Surface-based in situ measurements currently provide an underutilized dataset for evaluating and 695 

constraining modeled absorption in the boundary layer. If deployed at existing, long-term surface 696 

sites, the state of the art instruments mentioned above could go a long way towards resolving 697 

uncertainties in climatological physical properties. This, in turn, could aid in interpreting the existing 698 

long-term monitoring data (e.g. PSAP measurements) in light of the issues summarized in this 699 

review.  700 

Further key areas of great present interest are constraints on the vertical distribution of absorbing 701 

aerosol, and the impacts of absorbing aerosol above cloud. Vertical distributions may be constrained 702 

in models through a combination of near-source plume-heights, as determined, e.g., from multi-703 

angle imaging, downwind layer profiles, retrieved, e.g., from space-based lidar, and the 704 

understanding that aerosol tends to concentrate in the boundary layer or in layers of relative 705 

stability in the free troposphere [158]. Such work has been suggested within the framework of the 706 

established AeroCom/AeroSAT collaboration, and may provide very relevant constraints in the 707 

future. Aerosol above cloud are presently being evaluated both from models and remote sensing 708 

(the OMI and MODIS teams in particular), and is a focus of the current ORACLES field campaign, but 709 

is at present still a major source of uncertaintly for the total radiative forcing exerted by aerosols. 710 
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In conclusion, although progress is rapid, there is still need for much additional work in 711 

characterizing aerosol light absorption in the atmosphere, and its effects on radiative forcing and – 712 

ultimately – the climate. 713 

  714 
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Tables 1315 

Table 1: A roadmap towards improved constraints on aerosol absorption. A constraint is here 1316 

defined as agreement between observational and theoretical/modelling estimates, and some 1317 

understanding of why they agree. The table lists developments that, in our view, are key to bringing 1318 

the field forward. 1319 

  Basic/immediate recommendations 

What Improved dialogue between aerosol observational and modelling communities 

How 
Continued focus on dedicated meetings, such as the annual AeroCom/AeroSAT 
workshops 

What Use consistent terminology for BC, in both observational and model studies 
How Adher to recommendations in Petzold et al. 2013, clearly define fresh/collapsed and 

young/old in optical parameter studies, avoid confusion with brown carbon 

What Rigorous treatment of BrC, in observations and models 
How Extend definition, discuss as part of spectrum of carbonaceous combustion products. 

Include in broader set of climate models. Develop emission estimates. 

What Consistent usage of AERONET observations 
How Adherence to quality flags, improved understanding of the impact of retrieval 

assumptions and treatment of the representativeness of site locations, closure studies 
using air borne in-situ measurements and sun photometers, bias correction for cloudy 
and low AOD days. 

  Developments/longer term recommendations 

What Improve microphysical treatment of aerosols in climate models 
How Include microphysics packages, multiple size modes, constrained physical properties 

based on observations. Rapid adoption of observational constraints, e.g of optical 
properties. 

What Improve satellite remote sensing sensitivity to absorbing-aerosol amount and type 
How Develop global, broad-swath, UV to NIR multi-spectral , multi-angle, and polarization 

imaging capabilities  
What Develop climatology of average aerosol optical properties, geographically, vertically,  

and seasonally resolved 
How Systematic aircraft measurements, coordinated as appropriate with ground based and 

satellite observations, and used as further constraint for climate models 
What Constrain absorption from aerosols above clouds 
How Develop/improve satellite retrievals, aircraft observation programs, and dedicated model 

studies  
What Constrain BC emissions, transport, ageing, geographical and vertical distributions  
How Targeted in situ aircraft and ground sampling  programs, in collaboration with modelling 

groups, explore constraints from measured long term absorption trends in different 
regions, document all relevant aspects of modeled life cycles of BC, BrC and dust. 

What Heighten focus on the role of dust 
How Measure and model optical properties of broader set of dust types, especially coarse-

mode dust. Implement in retrieval algorithms and transport models 
 1320 
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 1321 

Figures 1322 

  1323 

Figure 1: Optical parameters for the three main absorbing aerosol types, with values guided by 1324 

recent litterature. Left: Imaginary refractive index (k) as function of wavelength. Values are from [24] 1325 

(BC), [6,159,160] (BrC) and [20] (dust). The dust values represent the range of an AeroNet-derived 1326 

climatology. In the middle and right panels, the k values have been used as input to Mie theory 1327 

calculations, to yield consistent values for MAC and SSA. Mie calculation results are shown with 1328 

dashed borders. For BC and BrC, size distributions were taken from standard calculations of 1329 

accumulation type aerosols [161] (Radius (NMR) and sigma (GSD) of 0.04 m 1.5 for BC, and 0.05 m 1330 

and 2.0 for BrC). For mineral dust the observed size distribution from the DABEX aerosol campaign 1331 

was taken as input [162]. Aerosol densities applied in the Mie calculations were 1.2, 1.8 and 2.6 g 1332 

cm-3, for BrC, BC, and dust respectively. Freshly emitted BC is often composed of aggregates, 1333 

sometimes thinly coated, with a representative MAC of 7.5 m2 g-1. Using Mie theory with the 1334 

recommended refractive indices, size distributions and density is therefore inconsistent with 1335 

observed MAC of freshly emitted BC (see text for further discussion). To illustrate the optical 1336 

properties of common, freshly emitted BC, we show additional MAC and SSA values (grey 1337 

circles)where the Mie calculations have been scaled to achieve the recommended MAC of 7.5 m2 g-1 1338 

at 550 nm. In the MAC panel, we also indicate the range of values found in the literature for coated 1339 

BC, and collapsed, uncoated BC (see main text and Supplementary Table 2).   1340 
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 1341 

Figure 2: Top: Total, annual mean aerosol absorption optical depth (AAOD) from AeroCom Phase II 1342 

(multi-model mean), and the relative standard deviation (RSD) between the 16 participating models. 1343 

All models used consistent anthropogenic emissions from year 2000, and year 2006 meteorology. 1344 

However, biomass burning emissions and dust source parametrization varied between models. RSD 1345 

is only plotted for bins with AAOD>0.0015. Bottom: Simulated AAOD due to BC (grey), dust (green) 1346 

and BrC (brown) in a single model (LMDZ-INCA). The pie chart indicates the relative contributions of 1347 

each species to the global AAOD of that particular model. 1348 

  1349 
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Supplementary Materials 1350 

Supplementary Tables 1351 

 1352 

Supplementary Table 1: Summary of issues broadly discussed in recent literature, and a selection of 1353 

key publications. 1354 

Physical 

properties and 

modelling 

Current topics / issues Recent key papers 

(selected) 

BC Absorption enhancement during ageing, emission 

inventories, residence time, vertical concentration 

profiles 

[23,38-42,163,47], and 

Supplementary Table 2. 

BrC Composition, wavelength dependence, lensing, 

absorption decay over time 

[35,48,50,71,68,74,73,76] 

Dust Modeled source terms, size distributions, 

composition and assumptions on shape. 

[83,93,101,102] 

Model-based 

constraints 

Optical properties, model process differences, 

assimilation 

[164,165,106] 

Remote 

sensing and in-

situ 

measurements 

Current topics / issues Recent key papers 

(selected) 
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Remote 

sensing, 

ground 

stations 

AERONET AAOD at AOD<0.4, representativeness of 

sites, retrieval assumptions, separation of species 

[166,113,46,115,20,22] 

Remote 

sensing, 

satellites 

Separation of species, retrieval assumptions, 

aerosol above clouds 

[120,122-

124,126,127,129,131,165] 

In-situ, surface 

stations 

Limited spatial coverage, correspondence of 

measurements to model assumptions 

[139,140,99,146,147] 

In-situ, aircraft 

measurements 

Limited spatial and temporal coverage [163,37,68,102,166] 

1355 
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Supplementary table 2: Overview of enhancement factors from a number of studies. ε indicates 1357 

absorption enhancement factors calculated for freshly emitted BC, relative to pure uncoated BC. 1358 

“Pure” refers to uncoated and collapsed BC, “Fresh” refers to freshly emitted BC, while “Aged” refers 1359 

to aged BC that has become coated. 1360 

 1361 

 Eabs,fresh Eabs,aged Eabs,total λ (nm) 

 
Pure  

fresh 

Fresh  

aged 

Pure  

aged 
 

Bond and Bergstrøm (2006) [24] 1.5 1.5 (2.3)  

Cappa et al. (2012) [32] 1.06 1.2  532 

Cui et al. (2016) [28] 1.4 1.7 3 678 

Peng et al. (2016) [38]   2.4 532 

Liu et al. (2015) [167] 1.1 1.4  781 

Healy et al. (2015) [168] 1.0   781 

Nakayama et al. (2014) [36] 1.1   781 

Sinha et al. (2017) [169]   1.44 565 

Lan et al. (2013) [37] 1.07   532 

Liu et al. (2017) [42]  1.1-1.6  

405, 

532, 

781 

 1362 

 1363 

 1364 
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Supplementary Figures 1365 

 1366 

Supplementary Figure 1: Number of publications per year for aerosol absorption, and for the three 1367 

main absorbing species. Listings taken from ISI Web of Knowledge, category Meteorology and 1368 

Atmospheric Sciences. Keyword “absorption” was required for all papers, in addition to the terms in 1369 

the legend. The dashed line shows the sum of black carbon, brown carbon and dust absorption 1370 

publications.  1371 

 1372 

 1373 
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  1374 

Supplementary Figure 2: Relationships between aerosol loading and SSA. Left panel: Differences in 1375 

SSA obtained from multiple airborne, in-situ vertical profiling campaigns with SSA obtained from co-1376 

located, simultaneous AERONET retrievals as a function of AOD.  Open symbols are for 440 nm SSA 1377 

difference; filled symbols are for 550 nm SSA difference. Shading indicates combined uncertainty of 1378 

AERONET SSA values as function of AOD, as reported in Table 4 of [111], and uncertainty in the in-1379 

situ SSA. (Data from [166], their Figure 7). Right panel: Relationship between SSA and AOD at the 1380 

Southern Great Plains (SGP) AERONET site as a function of season for time period 1994-2016. 1381 

Symbols represent individual retrievals for Level 2 data (constraints on SSA retrievals (e.g., 1382 

AOD440>0.4)  were ignored); thick lines in top half of plot represent medians of SSA and AOD data 1383 

(left axis); thin stair step lines in lower half of plot represent number of points in each 0.05 AOD bin 1384 

(right axis).  The dark blue triangles in Fig. 4a result from comparing vertically integrated in-situ 1385 

measurements during profile flights over the SGP site with concurrent AERONET retrievals from the 1386 

AERONET dataset depicted in Fig. 4b.  1387 

 1388 


